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Abstract—Similarity digests have gained popularity for many
security applications like blacklisting/whitelisting, and finding
similar variants of malware. TLSH has been shown to be
particularly good at hunting similar malware, and is resistant to
evasion as compared to other similarity digests like ssdeep and
sdhash. Searching and clustering are fundamental tools which
help the security analysts and security operations center (SOC)
operators in hunting and analyzing malware. Current approaches
which aim to cluster malware are not scalable enough to keep
up with the vast amount of malware and goodware available
in the wild. In this paper, we present techniques which allow
for fast search and clustering of TLSH hash digests which
can aid analysts to inspect large amounts of malware/goodware.
Our approach builds on fast nearest neighbor search techniques
to build a tree-based index which performs fast search based
on TLSH hash digests. The tree-based index is used in our
threshold based Hierarchical Agglomerative Clustering (HAC-T)
algorithm which is able to cluster digests in a scalable manner.
Our clustering technique can cluster digests in O(n logn) time on
average. We performed an empirical evaluation by comparing our
approach with many standard and recent clustering techniques.
We demonstrate that our approach is much more scalable and
still is able to produce good cluster quality. We measured
cluster quality using purity on 10 million samples obtained from
VirusTotal. We obtained a high purity score in the range from
0.97 to 0.98 using labels from five major anti-virus vendors
(Kaspersky, Microsoft, Symantec, Sophos, and McAfee) which
demonstrates the effectiveness of the proposed method.

Index Terms—Clustering, Hierarchical Agglomerative Clus-
tering (HAC), Approximate Nearest Neighbour, Fuzzy Hashing,
Trend Locality Sensitive Hashing (TLSH)

I. INTRODUCTION:

Similarity is a powerful tool for information security
defense. Similarity measures detect novel artifacts that are
similar to others of interest, whether good or bad. In this
manner, defenders can detect variants of malicious software,
shellcode, or spam. Similarity can be used to cluster like
artifacts together, helping to group goods with goods and bads
with bads, and finding the bads hiding like goods. Clustering
unknown data in some interpretable way enables analysts to
quickly investigate latent groups, the clouds around them,
and the distant dissimilar outliers. For the problems of search
and clustering, a good similarity measure provides great
leverage to group similar bytestreams (malware), and discover
previously unknown malware by examining outliers.

In this paper, we aim to address the problem of aiding
security analysts to quickly sift through large corpus of data,
in order to find samples of interest, or draw meaningful

association between different malware/goodware. Fast search
and clustering are two fundamental tools which can help
analysts to hunt down the malware samples, and improve the
process of security analysis/malware hunting. While different
approaches have been utilized in the past to cluster malware,
however, they seem to lack in two important aspects, namely
scalability and resistance to evasion. Previous approaches do
not scale to hunting amidst billions of samples that exist in
the wild owing to their algorithmic characteristics. These
approaches either depend upon features which are hard to
compute, or use clustering techniques which are inherently
not useful for clustering malware at large scales. In Section
II we provide more details on previous work, and highlight
the differences with our work. Secondly, previous work relies
on features which are based on metadata instead of whole
bytestreams (as is the case with TLSH digests) and are
more prone to evasion attacks as the attacker can subvert the
whole clustering if one or more of the metadata involved is
compromised.

The main contributions of the paper are the design of a
fast search technique which is based on tree-based index and
utilizes the properties of the TLSH. The tree-based index is
then used to perform threshold based Hierarchical Agglomer-
ative Clustering (HAC-T) which is able to cluster TLSH hash
digests in O(n logn) time on average. We have performed an
empirical evaluation of HAC-T on up to 10 million samples
from VirusTotal using commodity cloud compute, and show
that it outperforms other standard and recent clustering tech-
niques while obtaining clusters which are of high quality. In
summary we make the following contributions in this paper:

• We present a fast search technique which is based on
nearest neighbors techniques as elaborated in Section V.

• We build on the fast search technique to do threshold
based clustering based on Hierarchical Agglomerative
Clustering.

• We have done a comparative analysis of different well-
known clustering techniques, and show that none of these
techniques is well-suited to cluster TLSH digests at scale.

• We show the HAC-T is highly scalable; it can be used
to cluster datasets with 10s of million of samples (and
potentially more) while still obtaining good quality of
clusters. We obtained a high purity score in the range of
0.97 to 0.98 for five well-known anti-virus vendors.



The organization of the rest of the paper is as follows. In
Section II we present details of prior work. In Section III
we give an overview of TLSH. In Section IV we present our
system overview and experimental design. In Section V we
present our work on fast search based on nearest neighbors,
and in Section VI we provide details of our clustering method
(HAC-T). Section VII gives an overview of the empirical
evaluation conducted, and finally in Section VIII we present
concluding remarks.

II. PRIOR ART:

TLSH is a high performance similarity hash digest,
as it gives excellent detection rates for finding similar
byte streams/files while minimizing the false positives.
[1]. Authors in [2] arrive at the conclusion that TLSH is
particularly well-suited at identifying variants of software
when minor source code changes occur. Recent research
measuring the effectiveness of different similarity hashing
techniques at detecting code re-use and identifying code
similarity of programs compiled with different optimizations
demonstrates that TLSH performs well on these tasks [3].
Other similarity measures like Lempel-Ziv Jaccard (LZJ)
are useful but simply not scalable enough to be used in a
large-scale study [4]

There are many works in the literature which aim to
cluster malware samples in order to make classification and
analysis of malware easier for the analysts. Authors in [5]
present a clustering technique which scales to cluster billions
of files. It is restricted to using meta-data about the files.
It uses sketches to represent files, and DBSCAN is used to
obtain final clusters using approximate nearest neighbors.
Another recent paper presents a variant of DBSCAN making
use of approx. nearest neighbors approach based on HNSW
(Hierarchical Navigable Small World) graphs [6]. In Section
VII we demonstrate a Hierarchical Agglomerative Clustering
(HAC-T) approach that scales better algorithmically and
empirically than these clustering approaches.

A variety of hierarchical clustering techniques have been
used on malware, and most of the approaches fail to scale
to millions of samples or more. A study using Hierarchical
Agglomerative Clustering (HAC) evaluates the clustering
effectiveness of ssdeep, sdhash, and mv-HashB [7]. This
work suggests improvements in the design of distance metrics
to obtain better quality clusters. However, the dataset was
quite small (only 1146 samples were considered). Authors
in [8] use Locality Sensitive Hashing (LSH) technique based
on approximate Jaccard similarity to cluster malware based
on hierarchical clustering technique. The dynamic features
of the malware are used to obtain the behavior profile when
is then used to compute the LSH. Again, the sample set
was rather limited (only around 70,000). A prototype-based
agglomerative clustering algorithm is used in another study
which only clusters the prototypes based on static features

like opcode [9]. The sample set consisted of approx. 130,000
samples. Another paper uses feature hashing to compactly
represent each malware [10]. It uses co-clustering to identify
subsets of malware to be grouped together. They used a
sample set of 1000 for single-node implementation and
approx. 655,000 for distributed implementation. These
studies [7]–[10] either did not evaluate their techniques on a
large-scale or their estimates of throughput take on the order
of days to scale to a million samples. Hierarchical clustering
is also used in other studies to cluster malware [11]–[13].
One study uses hierarchical clustering to group together
android-based malware based on shared code segments [11].
Hierarchical clustering is used also in [12] to cluster malware
samples based on features extracted from the command line,
like process name, and command line arguments. Hierarchical
clustering is also evaluated with different distance metrics
and linkage criterion in [13]. The sample size for these works
[11]–[13] does not exceed 100,000.

A comparative analysis of several clustering techniques
based on different distance and evaluation metrics is presented
in [14]. It found hierarchical and density-based approaches
as winners. A comparison study of different clustering
techniques is also conducted in [15]. The study concludes
that BIRCH clustering algorithm followed by hierarchical
clustering works best for clustering malware. BIRCH is a
general clustering technique which can be combined with
other clustering algorithms and usually works with Euclidean
based distances. Our study is based on non-Euclidean based
distances, therefore the direct applicability of BIRCH is
not possible. A deep learning based architecture based on
auto-encoders is used to cluster malware samples of Portable
Executable (PE) files [16]. A set of 54 features are used
which are based on the format of the PE file. The dataset
was close to 96,000 malicious samples, and 41,000 benign
samples. The output from the auto-encoder is used to project
onto a sample space which is then used for clustering. A byte
frequency based approach is used in [17] to cluster malware
samples. The byte frequency is represented as time-series
data which is then converted to a sequence of symbols using
symbolic aggregation approximation. The works [16], [17]
are not directly comparable to our work as they depend on
complex techniques and models which are difficult to scale.
Neither of these works have evaluated their techniques on
a million samples or more. Also, most techniques rely on a
set of features to obtain clustering and are more susceptible
to evasion as attackers can possibly trick such techniques by
hiding or changing a few features which they could control.
With TLSH, it is much harder to evade detection as the hash
is computed over the whole byte stream/file involved [18].

III. THE DESIGN OF TLSH:

TLSH is a locality sensitive hash which produces a fixed-
length hash digest based on the input bytes. The standard
TLSH hash (which is used throughout in this paper) comes out



to be 70 characters long. TLSH hash digest has the property
that two similar inputs would produce a similar hash digest
(the hash computation is based on statistical features of the
input bytes). The hash digest is a concatenation of the digest
header and digest body. The following steps are involved in
computation of the standard TLSH hash:

• All 3-grams from a sliding window of 5 bytes are used
to compute an array of bucket counts, which are used to
form the digest body.

• Based on the calculation of bucket counts (as calculated
above) the three quartiles are calculated (referred to as
q1, q2, and q3 respectively).

• The digest body is constructed based on the values of the
quartiles in the array of bucket counts, using two bits per
128 buckets to construct a 32 byte digest.

• The digest header is composed of a checksum, the
logarithm of the byte string length and a compact rep-
resentation of the histogram of bucket counts using the
ratios between the quartile points for q1:q3 and q2:q3

Two different TLSH hash digests are compared using the
TLSH distance. The TLSH distance of zero represents that the
files are likely identical, and scores greater than that indicate
greater degrees of dissimilarity (please see the original paper
for more details on the computation of the distance). [1]
Through extensive experimentation it is shown in the paper
that TLSH is good at producing similar hash digests of two
similar files which have undergone small changes. The design
choices of TLSH take into consideration criterion like runtime
performance, anti-evasiveness, and false positive rate. Creating
a digest of relatively small fixed length guarantees predictable
consistent runtimes across arbitrary length byte streams. Using
K-skip N -grams improves anti-evasiveness at the cost of
runtime, and so the default version of TLSH use 2-skip 5-
grams as a knee of the curve value.

IV. EXPERIMENTAL SETUP:

In this section we describe the experimental setup
including data sources utilized, the measurements and
evaluation metrics, and the hardware used.

A. The Data:

We source data from VirusTotal data feeds. We used
a random sample of VirusTotal data downloaded between
September 2019 and Feb 2020. The VirusTotal data feed
gives information about the scan results of all the major
anti-virus vendors, and includes some auxiliary information
(like SHA256, md5 etc.) for each file. We calculate the TLSH
for each Win32 PE file that is submitted to VirusTotal, as
provided by the data feed. The scan includes information on
whether the file is malicious or benign, and also the result of
the scan (the format is type.family.variant). We use the TLSH
and scan results of five major anti-virus vendors (Kaspersky,
Microsoft, Symantec, Sophos and McAfee) when doing
clustering analysis to ascertain the quality of the clustering.

B. Measurements/Evaluation:

We used silhouette coefficient to measure the clustering
quality of different well-known clustering techniques,
including K-Means, K-Medoid, CLARANS, and DBSCAN.
Silhouette coefficient varies from -1 to +1 with scores closer
to +1 showing good cluster separation while scores closer to
-1 show that clusters are confused and overlap. The advantage
of using the silhouette coefficient is that it can be calculated
without relying on any external label to ascertain the quality
of the cluster. The problem with measuring clustering quality
with silhouette coefficient is that this metric is O(n2), and
difficult to scale when data size grows to millions of items.
Therefore, we were unable to use silhouette when measuring
results of clustering on millions of samples.

In evaluating the HAC-T clustering technique presented
here we used purity score. Purity score varies from 0 to 1 with
scores closer to 1 showing that the cluster quality is good.
Besides cluster homogeneity and separation, another important
criteria for the usefulness of the clustering techniques is
the percentage of data items which are clustered and the
complementary number of data items which are marked
as ‘noise’ and not assigned to clusters. Usually there are
tradeoffs involved between percentage of data items clustered,
and the quality of the clusters obtained. For example, for
DBSCAN, the choice of parameters min points and epsilon
affects the percentage of data items marked as ‘noise’ and
also the quality of the clusters. In this work, we provide
guidance for parameters which balance cluster coverage and
cluster quality for our Hierarchical Agglomerative Clustering
approach (HAC-T).

C. Hardware:

Our experimental setup consists of a commodity cloud
32-core machine with 128 GB memory, and AMD EPYC
7000 series processor (with an all core turbo clock speed
of 2.5 GHz). We parallelized the implementation of some
algorithms (K-Means, K-Medoid, and CLARANS) to make
the comparative evaluation of these algorithms more tractable
(these were parallelized using python programming language,
and make use of message passing libraries). We implemented
DBSCAN in C/C++ and run on a single core as a direct
comparison with HAC-T is presented which relies on single-
core implementation done in C/C++.

V. FAST SEARCH USING TLSH FOREST:

The fast search problem can be stated as a type of nearest
neighbor search:

• We have a dataset, D, of items and a similarity or distance
measure. For the remainder of the paper we will assume
a distance measure Dist(d1, d2).

• We have a new data item, S, where we want to find
dmin, the element of D which is closest to S. That is
the element of D which has minimum Dist(dmin, S).



• We need to avoid comparing S to all of the elements of
D. Ideally, we require that we only compare S to a small
subset of D, for example to compare S to a logarithmic
number of elements.

There are a number of (approximate) nearest neighbor ap-
proaches. Special case fast algorithms exist for low dimension
and problems with specific geometry. The generalized ap-
proaches include (i) Locality Sensitive Hashing (LSH) where
the algorithm searches through data points which are mapped
onto the same bucket [19], and (ii) greedy search in proximity
neighborhood graphs [20] and (iii) vector approximation files
[21].

The malware problem (and computer security problems
in general) require a general solution. The traditional LSH
approach is to rely on bucket collions to identify near matches
[19]. We note that this approach has a significant problem for
security, namely an adversary has a target to aim for; once they
generate sufficient change to a malicious item to belong to a
new bucket, then they may have defeated the search algorithm.
Ideally, we want a search algorithm which is not brittle in this
way.

Here we present a different approach to the traditional LSH
methods. We can build a search tree where we may associate 1
or more items from D at the leaf nodes. Given a new item, we
can trace a path down the search tree and compare with the
nodes there. Depending on our computational requirements,
we can use the search algorithm from Vantage Point trees (with
backtrack) [22] to do search guaranteed to find the closest
item. Or we can do approximate nearest neighbor search by
employing a forest of trees; an advantage of this approach
is that we know the computational cost of a lookup which
is proportional to the depth of the deepest tree times the
number of items in the leaves. We describe the algorithm
below assuming that the TLSH distance is used, but any
appropriate distance measure can be used1.

A. Building Trees:

We now describe how we can build such a search tree from
a dataset D. First of all, we define a SplitMethod as shown
below which has inputs a node N (where we associate N.data
with a subset of D) and outputs (Y, T,X1, X2). If the distance
measure has the appropriate characteristics, then we can ensure
that the size of X1 and X2 are approximately the same size.

We can add an additional requirement that Split Method
should only be applied to nodes where the resulting threshold,
T , which splits the set into two should be greater than some
parameter. For example, if we find that a node has a T = 1,
then it is very likely that there is no benefit in splitting N .

We can then build a tree by setting root.data ← D and
calling TreeBuild(root):

1TLSH is an approximate distance metric (within a constant of a metric),
so it can be employed in a single tree with backtrack, or it can use a forest of
search trees (which can be a randomly constructed forest to ensure that they
are uncorrelated trees).

Algorithm 1 SplitMethod(N)

nitems← size(N.data)
if nitems < nitemsInLeaf then

return NULL
else

Y ← random element of N.data
Find threshold (T ) s.t. size(X1) ≈ size(X2) where

X1← {xi ∈ N.data : Dist(xi, Y ) ≤ T}
X2← {xi ∈ N.data : Dist(xi, Y ) > T}

return (Y, T,X1, X2);
end if

Algorithm 2 TreeBuild(N)

Res← SplitMethod(N)
if Res 6= NULL then
(Y, T,X1, X2) = Res
N.Split← Y
N.Threshold← T
N.LC.data← X1
TreeBuild(N.LC)
N.RC.data← X2
TreeBuild(N.RC)

end if

We can search through the tree for items closest to an item
of interest, S, by performing Search(root, S) which returns
the closest item to S and the distance from S to that item:

Algorithm 3 Search(N,S)

if isLeaf(N) then
X ← closestItem(N,S)
d← Dist(X,S)
return (X, d)

else
thisDist← Dist(N.Y, S)
if thisDist ≤ T then

return Search(N.LC, S)
else

return Search(N.RC, S)
end if

end if

B. Implementation:

We have implemented the search tree and search forest as
described in the previous section. The search speed is very
fast and we compared these with linear search.

C. Requirements for a Fast Search Measure:

The fast search approach uses characteristics of the distance
measure to achieve high performance. In particular we need
to be able to split arbitrary sets of elements in two so that
the partitions are approximately equal in size. If this is not
achieved, then the tree will be unbalanced and we will fail to
achieve logarithmic search times. This characteristic for fast



search can be achieved by criteria which have a smooth ROC
curves [23]. In particular, similarity measures such as Ssdeep
and Sdhash suffer from this as shown in the ROC curve in
Figure 1 of [1].
We note that we have seen a number of papers convert TLSH
(distance metric like) into a similarity score. This is done,
for example, by mapping score in the range 0 – 100 to [0,
1] and all scores > 100 to 0 similarity. We strongly advise
against turning distance metrics into similarity scores in this
way; doing so breaks the properties which enable fast search
and scalable clustering 2.

VI. THRESHOLD BASED HIERARCHICAL
AGGLOMERATIVE CLUSTERING (HAC-T):

Algorithm 4 HAC-T(D,CDist)

Step 1: Preprocess data
for each distance d ∈ [0, CDist] do
ListPair(d)← Empty

end for
for each item A ∈ D do
(B, d)← Search(root, A)
if d < CDist then

Insert (A,B) into ListPair(d)
end if

end for
Step 2: Cluster data
for each item A ∈ D do

Put A in its own cluster
end for
for each distance d ∈ [0, CDist] do

for each pair (A,B) ∈ ListPair(d) do
if cluster(A) <> cluster(B) then
Merge(cluster(A), cluster(B)

end if
end for

end for

We now consider approaches to clustering large datasets.
We consider standard approaches such as Kmeans, Kmediods
(CLARANS) and density-based clustering (DBSCAN). The
arguments for the Kmeans / Kmedoids is often stated as
because standard agglomerative clustering methods can be
very slow. The straight forward way to calculate the distance
matrix requires O(n2) distance calculations, where n is the
number of items in D.. However, the methods which require
the number of clusters be given in advance can be unsuited
for security applications, where such knowledge cannot be
known since an adversary will be creating the cluster which
are the most important. In addition, small clusters may be
very important, and small clusters which contain a legitimate
file and a malicious variant of that file are very important
to identify. We also consider the straight forward hierarchical
clustering approach. If we use a fast search approach then we

2TLSH was designed with this characteristic to enable fast search.

can evaluate the closest few data points (the closest 2 points in
our implementation) to each other point, generating a distance
matrix in O(n logn) time. This makes the straight forward
hierarchical approach very attractive. The approach can be
readily adapted to a range of linkage approaches including
complete linkage or single linkage clustering.

The algorithm to do single link hierarchical agglomerative
clustering (HAC) on dataset D, with a threshold distance
between clusters CDist is the HAC-T shown in Algorithm
4. The HAC-T algorithm clusters data in 2 steps. Step 1
creates a data structure with close matches; this is done in
a computationally efficient way by using the fast Search
algorithm from Algorithm 3. In this step, we exploit the
discrete nature of LSH distances to create a convenient
data structure. Step 2 does the same merge operations as a
traditional HAC algorithm. The algorithm can be extended to
other linkage criteria (such as complete linkage) or continuous
distances in straight forward ways.

A. Computational Complexity of HAC-T Procedure:

The HAC-T procedure is O(n logn) as the running time
is dominated by step 1, determining the distance matrix. We
have confirmed this for the TLSH distance measure3 using
two methods: (i) by monitoring the relative running times
of various parts of the algorithm on large datasets; and (ii)
profiling the program using gprof.

VII. EXPERIMENTAL EVALUATION:

In this section we will first present a comparative analysis of
different well-known clustering techniques, and then show that
HAC-T as presented in this paper is much more scalable as
compared to other techniques, and also produce good quality
clusters. Next, we present a comparative analysis of different
clustering methods.

A. Comparison of Clustering Techniques:

We present an analysis of different clustering techniques
which we used to cluster TLSH hash digests of PE files. For
comparison purposes, we use a sample size of up to 10,000
samples. The clustering quality is measured with silhouette
coefficient. We use four clustering techniques including
K-Means, K-Medoid [24], CLARANS [25] and DBSCAN
[26]. We finally present an evaluation of HAC-T using 10,000
samples which demonstrates that HAC-T is a clear winner
in terms of performance (as measured by run times) and
also produces good quality clusters. The K-Means approach
relies on computation of mean which is obvious in case
of Euclidean coordinates and distance metrics. One cannot
directly compute the mean of TLSH hash digests but we
make use of a heuristic which approximates the mean. The
heuristic works by first preprocessing a TLSH hash digest of

3We did code optimization in version 3.11.0 of TLSH and got the evaluation
time of the hash to be comparable with cryptographic hashes. We perform 1
million distance calculations in 147 msec on amazon linux 2 instance(https:
//aws.amazon.com/amazon-linux-2/).



70 characters to 70 dimensional Euclidean coordinates with
ASCII values. The mean of each cluster is chosen as the
hash digest which has closest TLSH distance to the mean as
calculated by computing mean of 70-dimensional vectors in
each cluster. We used 100 as the max. iterations parameter
for K-Means and simple K-Medoid algorithms.

Note that the three algorithms (K-Means, K-Medoid, and
CLARANS) were run on a 32-core machine, and were par-
allelized to make the experiments more tractable. We paral-
lelized the calculation of mean in K-Means, and medoid in
K-Medoid. For CLARANS, we parallelized the cost function
when selecting a new neighbor.

n k=10 k=20 k=30 k=40 k=50

K-Means
3000 0.07 (5.82) 0.09 (10.38) 0.08(14.92) 0.09 (19.06) 0.06 (23.51)
5000 0.11 (6.56) 0.10 (11.26) 0.07 (15.98) 0.07(20.72) 0.07(24.62)

10000 0.12(7.5) 0.09(13.74) 0.08(19.43) 0.07(24.52) 0.06(29.13)

K-Medoid
3000 0.09(15.78) 0.1(21.09) 0.08(27.58) 0.08(21.06) 0.08(15.96)
5000 0.12(26.93) 0.12(35.78) 0.09(27.29) 0.07(25.96) 0.09(44.12)

10000 0.13(61.12) 0.13(98.47) 0.11(80.84) 0.10(96.54) 0.14(139.41)

CLARANS
3000 0.13(3.89) 0.12(42.43) 0.11(59.66) 0.09(168.65) 0.09(162.91)
5000 0.13(18.44) 0.11(42.23) 0.10(239.08) 0.10(142.22) 0.10(386.44)

10000 0.15(53) 0.11(429.56) 0.10(1303.81) 0.10(1270.66) 0.10(5073.19)
TABLE I

COMPARISON OF SILHOUETTE SCORE FOR K-MEANS, (SIMPLE)
K-MEDOID AND CLARANS WITH RUNTIME (SEC)

As can be seen from Table I all these clustering techniques
do not perform well for different values of n and k.
The interesting clusters are small in size, and it is quite
challenging to find the small interesting clusters using the
above techniques. In particular, it is hard to fine-tune the
parameter k to hunt down the clusters which are well-formed.
Another difficulty is that these techniques try to cluster all
the data without separating out outliers or noise which don’t
belong to any well-formed clusters. The result is that the
clusters found are coarse-grained, and not useful for grouping
together similar files. Next, we present DBSCAN which
produces better quality of clusters but has scalability issues.

epsilon =10 epsilon=20 epsilon=40 epsilon=60 epsilon=80
Silhouette 0.92 0.90 0.82 0.70 0.58
time (s) 99.88 99.91 99.88 99.73 100.24
Noise (%) 82.51 79.03 72.95 66.11 58.34

TABLE II
SILHOUETTE SCORE WITH TIME(S) AND NOISE (%) AT VARIOUS VALUES

OF epsilon AND min points=2 FOR DBSCAN (n=10000)

DBSCAN has two parameters min points and epsilon,
which affects the percentage of items clustered, and the
resulting quality of the clusters obtained. Table II shows the
tradeoff involved between these two quantities at various
values of epsilon. While DBSCAN is useful for finding
good quality clusters it suffers from scalability issues as it
is essentially O(n2) algorithm and does not scale well to
millions of items.

Next, we present the clustering quality obtained with
HAC-T at various values of T

T =10 T=20 T=40 T=60 T=80
Silhouette 0.86 0.83 0.77 0.69 0.61
time (s) 1.68 1.64 1.65 1.66 1.66
Noise (%) 76.94 72.05 66.19 59.84 53.39

TABLE III
SILHOUETTE SCORE WITH TIME(S) AND NOISE (%) AT VARIOUS VALUES

OF T FOR HAC-T (n=10000)

As can be seen from Table III HAC-T is much faster
as compared to DBSCAN and also produces comparable
cluster quality (note that both DBSCAN and HAC-T are
run on a single-core for this comparison). Next, we will
evaluate HAC-T on up to millions of items, and show how it
scales on large input sizes. We also evaluate the quality of
the clusters by using external labels as obtained by VirusTotal.

B. Scalability of HAC-T:

We present experimental evaluation for larger data sizes.
In the table below we report run-times for running HAC-T
on data sizes of up to 10 million items.

n=1000000 n= 5000000 n=10000000
time (s) 478 3434 7974
Noise (%) 29.6 34 34

TABLE IV
RUNNING TIME(S) AND NOISE (%) WITH T =50 FOR HAC-T

As can be seen from Table IV, HAC-T based clustering
presented in this paper can scale to 10 million items on a
single core. A dataset of 10 million items can be clustered
in approximately 2 hours and 10 mins using this HAC-T
technique using commodity hardware. The percentage of
items clustered are around 66 percent (for 10 million items).
For comparison, the clustering technique presented in [5]
can cluster 32 million items using 57 million approx. kNN
queries each of which takes 4 ms to complete, which would
be approx. 63 hours. Assuming the linear relationship between
no. of queries and no. of files to cluster as claimed in the
paper, we estimate that it would take approx. 20 hours to
cluster 10 million items. Therefore, the clustering technique
presented in this paper scales much better.

The maximum size of the dataset considered for
experimental evaluation in [6] is around 2 million items
(with euclidean distance metric). It takes around 27498 (s) to
build the index and cluster this dataset which is approx. 7
hours and 38 mins. Note that using the approach presented
in this paper, one can cluster 10 million items in around 2
hours and 10 mins. This comparison shows that the approach
presented here has better runtime performance than other
approaches have achieved. This better run-time performance
is a result of the design of HAC-T which is able to perform
fast search and clustering in O(n logn) time on average, and
allows HAC-T to scale to a large number of samples.



Below we tabulate clustering quality evaluated using labels
gathered from VirusTotal involving five major anti-virus
vendors (Kaspersky, Microsoft, Symantec, Sophos and
McAfee). We made use of five anti-virus vendors as quality
of the labels varies for each vendor across different data
samples. We report the clustering quality using purity, and
data size is 10 million items. A high purity score in the range
from 0.97 to 0.98 shows the consistency of our proposed
method across different vendors.

AV vendor Kaspersky Microsoft Symantec Sophos McAfee
purity 0.979 0.983 0.986 0.980 0.978

TABLE V
PURITY SCORE FOR DIFFERENT AV VENDORS WITH T =50 FOR HAC-T

(n=10000000)

Table V shows a purity score of between 0.97 to 0.98
when data is clustered using HAC-T and evaluated using scan
labels from five major AV vendors. The high purity score
achieved shows the proposed technique is able to produce
well-formed clusters, and separates out the PE files based on
malicious/benign labels.

VIII. CONCLUSION:

In this paper we have shown that TLSH hash digests can
be used to do fast search and clustering such that the clusters
obtained exhibit a high degree of similarity. Previous work
on malware clustering often relies on hierarchical clustering
to obtain the clusters, and as such suffers from scalability
issues. While some recent approaches [5], [6] claim to use
more scalable techniques, but as demonstrated in the paper
these approaches are still less scalable, and also more prone
to evasion attacks as they are based on features which rely on
metadata as opposed to utilizing the whole bytestream. Using
TLSH hash digest has the advantage of using a fixed length
digest which is easy to compute, performs well on range of dif-
ferent domains as the hash is computed at the bytestream level,
and is optimized for performance and security considerations.
Our fast search technique utilizes the properties of TLSH, and
when augmented with our theshold based clustering technique
(HAC-T) results in a fast and scalable method which can scale
to large number of samples. For future work, we plan to do
more experiments using more data sources in addition to the
VirusTotal feed, so as to be able to demonstrate the broad
applicability of our proposed technique.
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